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We consider the implementation of a quantum actor-critic algorithm, using a hybrid quantum-
classical framework, a parametrized quantum circuit, as the analog of a neural network. This paper
can be seen as a first approach to quantum reinforcement learning to understand how it works and,
based on that, be able to make improvements in order to analyze more complex cases. In addition,
analysis of the REINFORCE and deep Q learning algorithms are included, all applied to solve the
standard cart-pole environment.

I. INTRODUCTION

Over the years, humanity has pursued ways to solve
problems in the most efficient way possible. For this,
they have primarily used the intrinsic relationship
between computing and physics. An example of this is
the Landauer’s principle [1], which shows the relation-
ship between thermodynamics and information [2]. In
the same way, it gave birth to inventions such as the
transistor, microprocessors, and eventually the digital
computer [3]. To date, computers have been used to
solve and optimize all kinds of processes. Taking this
into account, to solve some problems, such as weather
prediction [4], it is first necessary to simulate them [5].
However, let us not forget that we live in a quantum
world; therefore, for this to be as accurate as possible,
doing it on a computer of the same nature would be
most appropriate [6]. That is why based on this idea and
with the improvements and developments in the field of
computer science, for instance GPUs or advanced data
compression methods [7], nowadays much is said about
quantum computing (QC) and adjacent technologies
such as artificial intelligence (AI) or machine learning
(ML). It is almost impossible not to notice ML because
it is applied to almost anything we can think of, as it
is becoming an active and essential part of our daily
lives [8], used in many sectors including engineering,
medicine, and science.

The use of ML today has made it possible to per-
form complicated tasks that were almost impossible
or time-consuming to achieve previously (for instance,
the use of ML and AI as a tool for rapid detection
and management of COVID-19 [9]) autonomously since
computers learn by themselves. To achieve this goal,
there are different methods, classified according to their
way of approaching each task: supervised, unsupervised,
and reinforcement learning (RL). The first two are
based on a training process using labeled or unlabeled
information with relevant samples to solve classification
or regression problems [10]. In contrast, in reinforcement
learning, one of the key ideas is decision-making to
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achieve a goal. Each decision taken has an immediate
consequence that, at the same time, influences actions
in the future [11]. This formalism is known as Markov
decision processes (MDP), which is shown in Fig. 1.

One way to see it applied is when trying to learn chess,
a complex game in which possible moves or actions and
the opponent’s responses (which lead to a different state
in the game and will guide the next moves) have to be
taken into account. Despite not being obvious, each
action is reflected in the future since the possible ranges
of moves that will be taken later depend on it. It seeks
to take actions that allow obtaining the most valuable
pieces since this maximizes the possibility of winning
the game in the long term [11].

On the other hand, quantum computing [12] is also
gaining popularity lately. Although the beginnings of
this theory date back to before the 80s [6], recently, there
has been a significant increase in development. Proof
of this is that the development of quantum computing
during the last decade has been increasing, thanks to
companies such as Google with Sycamore, a quantum
processor with an array of 53 qubits [13], IBM with
Eagle processor and Qiskit [14], and Intel with the first
silicon qubits [15]. This development is in part due to
commercial investment, but significant research is being
done in academia at the same time. Examples of this
are room-temperature studies for quantum circuits [16]
and compiler structure for 3-qubit gates [17]. These
companies, responsible for some of the most recent

FIG. 1: The agent-environment Markov decision
process to find the best actions to complete a goal,
where an agent chooses an action that updates the

environment, which in turn, feeds back the new state
and reward. The diagram is taken from [11].
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advances, have provided us with tools such as IBM
quantum [18], a cloud-based quantum processor to
discover and experiment in order to promote scientific
advances to overcome the challenges that still remain to
be solved.

We are entering the era of Noisy Intermediate-Scale
Quantum devices with more than 50 qubits capable
of performing difficult calculations, even for today’s
supercomputers. However, these are not yet capable
of error correction, which entails weighty restrictions
regarding the number of qubits and size of the circuits
[19]. Despite these advances, the reality is that there
is still a long way to go in order to have a stable and
efficient physical infrastructure. For instance, in the con-
tinuous development of quantum error correction [20],
as quantum computing is probabilistic, the operation
has to be repeated many times to obtain an accurate
result. Since quantum operations are noisy, when these
errors accumulate a calculation failure occurs, limiting
its power [21]. That is why it is crucial to study and
contribute to the state-of-the-art of these still emerging
and robust technologies with the aim of taking advantage
of their benefits.

It has been shown that in certain settings, quantum
computers can provide polynomial [22] and exponential
[23] speed up compared with classical computers. It is
natural to ask, can these advantages be used in machine
learning? Due to the versatility of RL and the power
of quantum computing, it may be possible to tackle
problems that are impossible to solve with conventional
classical techniques or drastically improve performance.
In this paper, we tackle the classic cart-pole RL problem
using quantum approaches to RL.

In this paper, we considered three of the most signifi-
cant and widely used algorithms of RL, to subsequently
contrast the results obtained from each one: REIN-
FORCE [24], deep Q learning [25] and actor-critic [26];
in a classical and quantum benchmark, replacing neural
networks with quantum circuits in the latter. Quantum
circuits are simulated in a classical computer using
TensorFlow quantum (TFQ) [27]. An important part of
this problem is the cart-pole environment or system, but
thanks to OpenAI gym [28], an open source tool that
offers a variety of environments in order to facilitate
the study and development of artificial intelligence, it
can be easily implemented. According to some of the
results of this paper, one interesting point is that when
comparing the quantum actor-critic algorithm with its
classical analog, it did not show a significant advantage,
indicating that a simpler function approximator works
better for this case.

This paper is structured as follows: In section II
we will talk about the necessary elements to design a
parameterized quantum circuit (PQC). In Sect. III,

the basics of reinforcement learning and the types of
methods or algorithms used in this paper will also be
described. An analysis of the results and performance
will then be carried out in section IV. To finish, in
Sects. V and VI we will discuss the difficulties and
improvements that this project have.

II. SETUP: QUANTUM AGENT

In this section, we present the necessary elements of
quantum circuits to introduce PQC that will replace the
neural network in our quantum RL.

Quantum computing consists of computation based
on the laws of quantum mechanics. It is interesting to
mention that QC is also possible in some way thanks to
the contributions of Alan Turing, his Turing Machine,
and its efficiency in simulating algorithms [29]. What
made later physicists like Paul Benioff suggest that
it was possible to build a quantum computing model
represented by Turing machines [30]. In the same way,
mathematicians and physicists like Yuri Manin [31], and
Richard Feynman [6] had already been speculating about
the strong connection between physics and computation,
creating the concept of having computers based on
quantum mechanics. Moreover, David Deutsch, with
his article [32] where it states that any physical process
can be simulated in a universal device using the laws
of physics. A device capable of not only performing
any process that a classical computer can do but also
performing quantum mechanical processes [33].

All the research and knowledge mentioned above
has served the purpose of suggesting and exploring
the use of quantum mechanics as a new paradigm of
computation [34]. And thanks to those contributions
that were the basis of both experimental and theoretical
discoveries, such as one of the most famous quantum
algorithms, Peter Shor’s integer factorization [23], which
has exponentially better scaling than the best classical
algorithm.

A. Qubit

The bit is the basic unit of information in classical
computing which can take two states. Like the classical
bit, which can be either in an abstract state 0 or 1, the
qubit also has two states in which it can be, but these
behave differently from their analog classical. First
there are the quantum states |0〉 and |1〉, which from
what is commonly called the computational basis. Its
representation in the Dirac bra-ket notation is as follows:
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|0〉 =
[
1
0

]
, |1〉 =

[
0
1

]
. (1)

The qubit can be in one of these two states, but it
can also be in a superposition of these, i.e., it is a linear
combination of |0〉 and |1〉, which are two orthonormal
vectors. It can therefore be represented as a vector in a
2D complex space. The general way to define the state
of a qubit would be:

|ψ〉 = α |0〉+ β |1〉 , (2)

where α and β are complex numbers and the amplitudes
of each state, whose squares represent the probability
that the qubit is in each state [12]. These amplitudes
have the constraint,

|α|2 + |β|2 = 1. (3)

This expression can be viewed as a normalization
condition, which is simply that probabilities add to 1.

In the same way that in classical computing, one bit is
not enough to perform complex operations, in quantum
computing, more than one qubit is also needed to perform
complex calculations. When introducing more qubits,
the state can now be described as,

|ψi0,i1,...,in〉 =
1∑

i0,i1,...,in=0
ψi0,i1,...,in |i0, i1, ..., in〉 , (4)

with
∑
i0,i1,...,in

|ψi0,i1,...,in |2 = 1, and where
|i0, i1, ..., in〉=|i0〉⊗|i1〉⊗ · · · ⊗ |in〉 is the tensor product.
The number of parameters needed to describe a system
of n qubits will be 2n, whereas, in a classical system, it
only needs n to specify the state of n bits. This supposes
exponentially more parameters to specify the state than
the classical case and, therein the potential advantage of
quantum computing [35].

B. Quantum logic gates

As mentioned in section II A, introducing more qubits
and manipulating them in a certain way allows quantum
computing to be built in the same way as classical
computing: based on circuits, using wires (qubits) that
transmit information and quantum gates that act on it
to represent calculations [12]. That is why there is the
equivalent to classical logic gates (e.g. NOT, AND, OR)
and they are quantum logic gates. These logic gates
receive a set of qubits as input, and apply some kind of
unitary transformation to them.

These quantum gates on a single qubit can be repre-
sented in a matrix form, by unitary [36] 2× 2 matrices.
One of the most important are the analogous to the clas-
sical NOT logic gate, which in QC would be the inversion
gate, also known as the X gate, or the Pauli X gate [12],

X ≡
[
0 1
1 0

]
. (5)

The action of this logic gate is that when applied to
state |0〉, state |1〉 is obtained, and when applied to state
|1〉, state |0〉 is obtained, i.e., it flips the states |0〉 ↔ |1〉,
as shown in Eq (6).

X |0〉 =
[
0 1
1 0

] [
1
0

]
=
[
0
1

]
= |1〉 ,

X |1〉 =
[
0 1
1 0

] [
0
1

]
=
[
1
0

]
= |0〉 .

(6)

In the same way, other essential gates are the Pauli Y
gate and Pauli Z gate:

Y ≡
[
0 −i
i 0

]
;Z ≡

[
1 0
0 −1

]
. (7)

The states |0〉 and |1〉 are eigenstates of Z, hence
commonly referred to as Z-basis.

Similarly the Hadamard gate is very useful, and is rep-
resented as follows:

H ≡ 1√
2

[
1 1
1 −1

]
. (8)

This gate is used to create superposition states, that is,
to pass them from the state |0〉, to a state of equal prob-
ability for |0〉 and |1〉 [12], i.e.,

H |0〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
= 1√

2
|0〉+ 1√

2
|1〉 . (9)

Pauli gates are helpful to define other important ones,
which are the following rotation gates [12]:

RX(θ) = exp{−iθ2X} = cos θ21− i sin θ2X,

RY (θ) = exp{−iθ2Y } = cos θ21− i sin θ2Y,

RZ(θ) = exp{−iθ2Z} = cos θ21− i sin θ2Z.

(10)

This gates are important because any single qubit gate
can be constructed using combinations of these rotations
[12].
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Likewise, gates can be constructed to apply to a system
of qubits instead of an individual qubit, and can generate
quantum entanglement between them [35]. One of the
most commonly used and experimentally implemented
is the Controlled-NOT (CNOT). This gate acts on two
qubits, the control qubit and the target qubit [12]. In
case the control qubit is set to 1, the state of the target
qubit is flipped, otherwise, nothing is done, i.e. |00〉 →
|00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉. Its matrix
representation is as follows,

CNOT ≡ ≡

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (11)

The CNOT gate cannot be implemented using only
single qubit gates. This is an entangling gate that
can generate quantum entanglement between qubits.
Entanglement can be viewed as a computational resource
not available in classical computing [35].

Another two-qubit operation is the controlled-Z (CZ)
gate, which works similarly to the CNOT gate if the
control qubit is in state |1〉, but instead applying the
Z gate [37]. Its matrix representation is as follows:

CZ ≡ ≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (12)

Although in this paper only the most basic and essen-
tial gates for our project were explained, there is still a
wide variety of interesting gates.

C. Quantum circuits

Quantum circuits, like the classical ones, are used to
define operations and algorithms, but in this case they
will work on qubits. Here we introduce the schematic
representation of the quantum circuit.

In QC, a logic gate is graphically represented by its
symbol inside a square box, and black lines can be seen
as quantum wires and represent a single qubit. The time
goes from left to right, and the different operators of the
circuit are computed sequentially. The measurements
are left at the end of the circuit to obtain information
about the final state of the qubit projecting at the
computational basis [33], as shown in the circuit in Fig.
2.

|0〉
initial state X |1〉

FIG. 2: Quantum circuit with an initial state |0〉 and
then an application of a X gate, to finally perform the

measurement, obtaining as a result of |1〉.

D. Variational quantum circuits

Nowadays, hybrid methods use classical computers to
simplify the algorithms since they limit the use of quan-
tum computers to specific tasks in which its use may pro-
vide an advantage. This makes them perfect candidates
for the first real applications of quantum computers in
the near future [38]. One of the most promising hybrid
methods is the use of parameterized quantum circuits or
variational quantum circuits (PQCs or VQCs), which are
formed by fixed gates (for instance, an X gate) as well
as gates whose action depends on an adjustable variable
(such as a quantum rotation of a given angle), i.e. single-
qubit rotations [39].

θ s, λ θ s, λ θ

......

......

...
...

...

......

|0〉

|0〉

...

|0〉

FIG. 3: Parametrized quantum circuit with data
re-uploading. The blank squared boxes are general

parametrized single qubit gates, that can have learnable
parameters θ, a CZ entangling gates. As well as

encoding gates with the following data: a s state, and λ
learnable scaling weights. This PQC has several data

re-uploading, this can be done by duplicating the
encoding gates along with the variational and encoding

angles as many times as necessary.

Variational circuits are mathematically equivalent to
unitary operators in a space whose dimension grows
exponentially with the number of qubits [40]. In the
field of quantum computing, variational circuits stand
out, where parameterized circuits are optimized in order
to minimize a given cost function [41].

Hence for the realization of this project, we worked
with PQC, that can be viewed as a quantum analogue of
a neural network, that are used in a classical case. For
this specific case, the input of the circuit is the states of
the quantum agent s, which takes values corresponding
to the position and velocity of the cart, as well as
the angle and the angular velocity of the pole. As an
output it has the expectation values that will be used
for instance to approximate the Q values, or will be used
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for both an actor (policy), and another one for a critic
(value-function approximator) component [42], whose
details will be discussed later.

To have a better function approximation, it is neces-
sary to implement several re-uploadings [43], alternated
with variational gates, as shown in Fig. 3. This model
is hybrid because the quantum agent is repeatedly
interacting with a classical environment exchanging
states s, actions a and rewards r as in the Fig. 1, and
its trainable parameters are optimised iteratively using
gradient descent on a classical computer see e.g. [24, 44].

Depending on the state, the agent will act according
to the policy or Q values, receiving a reward as feedback
for each action performed [45]. The PQC has different
parameters, such as θ, λ, and w, being the policy
parameters, encoding gate input-scaling parameters,
and trainable observable weights respectively. At the
measurement, the expectation value of the observ-
ables (weighted Hermitian operator Oa) are obtained,
wa〈Oa〉s,θ, this operator is used to extract numerical
information from the gates as output e.g. the probability
of taking one of two actions [46].

More concretely we considered a 4-qubit circuit, as
shown in Fig. 4 as is the specific case used in this paper.
This circuit is a Controlled PQC, and it is composed of
RX , RY and RZ rotation gates (parameterized by dif-
ferent θ, Eq. (10)), as well as CZ entangling gates (Eq.
(12)) to entangle the qubits, that is, alternating layers of
encoding unitaries, with variational and encoding angles.

|0〉 RX(θ0) RY (θ1) RZ(θ2) RX(λ0s0) RX(θ12) RY (θ13) RZ(θ14)

|0〉 RX(θ3) RY (θ4) RZ(θ5) RX(λ1s1) RX(θ15) RY (θ16) RZ(θ17)

|0〉 RX(θ6) RY (θ7) RZ(θ8) RX(λ2s2) RX(θ18) RY (θ19) RZ(θ20)

|0〉 RX(θ9) RY (θ10) RZ(θ11) RX(λ3s3) RX(θ21) RY (θ22) RZ(θ23)

FIG. 4: Parameterized quantum circuit with data
re-uploading for our specific case. The shown circuit

consists of 4-qubits; a single layer is shown as an
example. It has a parameterized rotation in X, Y, and

Z axes, with a learnable parameter θ, and CZ
entangling gates. The encoding gates have the λ scaling

parameter and s of an X rotation.

The number of qubits corresponding to the 4-
dimension input is equal to the dimension of the state
of environment vector. The number of layers is variable
between 1-8, although in Fig. 4, a single layer is shown
as an example. These layers are mathematical operations
different from those of a neural network, but they are
called layers for practical purposes [46]. The number of
actions is two, the space of actions of the environment.
As its observables Oa =

∑
i wa,iHa,i, where it has the

Hermitian operator Ha,i which are the tensor products

of the Pauli Z matrices, since it shares the computational
basis, i.e., it can be decomposed in terms of the Z-basis
[24]. Specifically we use the Z0Z1Z2Z3 Pauli product for
REINFORCE, and Z0Z1 for action 0 and Z2Z3 for action
1 for deep Q learning [47]. For the actor-critic Z0Z1, Z2z3
are used for actions of the actor policy, while Z0Z1Z2Z3
is used for the critic value function. From these observ-
ables we can compute the output of for example a policy
for REINFORCE or actor, depending on the algorithm
used.

III. METHODOLOGY

In this section, the different methods used in this
project will be reviewed, analyzing their utilities, capa-
bilities and limitations. As well as a deepening of some
concepts addressed in the section I.

The environment used in this project is the Cart-
Pole-v1, an OpenAI Gym environment based on Michie
and Chambers’s pole-balancing problem, an important
benchmark in the field of reinforcement learning [48].
It comprises of a pole attached and balanced upright
to a movable cart. To solve this classical environment,
the aim is to prevent it from falling, applying the
appropriate forces, 0 or 1, actions which correspond to
the cart accelerating left or right, a reward of +1 will
be given at each step if the pole stays upright, with
a maximum reward of 500. Within the environment,
the state is defined by four values: cart position (-4.8,
4.8), cart velocity (−∞,∞), pole angle (-24◦, 24◦), and
angular velocity (−∞,∞) [28]. It has discrete actions
with continuous states. Every time the cart position or
pole angle are out of bounds, it will then restore to its
upright and initial position. Its graphical representation
can be seen in Fig. 5.

FIG. 5: The car-pole system is a post hinged to a car
that moves along a track. It has four states: trainer

position x, with values between ±4.8, angular velocity
w with values ±∞, angle between the vertical axis and
the pole θ (±24◦), and w, the angular velocity of the

pole with values between ±∞.

Unlike other ML methods, in RL, the agent is goal-
directed and must explore the environment to achieve
it. The RL formalism is mainly based on Markov
Decision Processes (MDP) [11]. One way to represent



6

this process is through the diagram in Fig. 1, where the
agent takes actions and sends them to the environment,
while the environment sends back information to the
agent in the form of states, and rewards. Typically
an objective is achieved by maximization of rewards
or expected return in a certain number of steps in the
environment, Rt+1, Rt+2, Rt+3, ..., RT , specifically, the
sequence of rewards obtained until the agent reaches
a terminal state of the environment, these are called
episodes [11]. For tasks that require many steps to
achieve the goal, the sum of rewards in the episode can
be represented as Rt+1, γRt+2, γ

2Rt+3, ..., γ
kRt+k+1,

this is called a discounted return, where γ is a discount
rate that goes from 0 ≤ γ ≤ 1, and determine the
present value of future rewards [11]. Therefore RL is
handy for implementing agents that act independently
in a given environment, e.g., application in robotics and
videogames.

The agent chooses its actions according to its strat-
egy, which it will update depending on the feedback
obtained, i.e., preferring it if it receives a positive
reward or changing it if negative. This strategy can be
seen as a table of probabilities or predicted rewards.
Depending on the agent’s state, specific actions may
have a higher probability of achieving positive feedback.
The agent is based on actions that have been shown to
be effective, but to find them, the agent must try actions
that have not been taken before, that is, there must be
a trade-off between exploration and exploitation [11].
The major problem with this type of algorithms is the
refinement of that table, since the agent learns based
on trial-error during the training phase. In cases where
the environment is large, i.e., with large and continuous
sets of states, this phase can last for a long time, and
all possibilities cannot be stored in memory. That is
why alternatives are sought that minimise training time;
some options are using neural networks or quantum
computing, taking advantage of the state superposition
to evaluate all actions simultaneously, thus reducing
training time.

In the quantum case, like deep reinforcement learning,
we use a PQC as a function approximator instead of
a table, like is doing in the tabular methods. The
difference in the classical case is that the function
approximator is a neural network, while in the quantum
case this function approximator is a PQC.

RL algorithms can generally be classified into three
different criteria: value-based, policy-based, or model-
based. In the value-based approach, the value function
is computed for each state and used to assess the pol-
icy. Whereas for a policy-based approach, the policy is
iteratively evaluated and improved [49]. Both methods
know the environment through simulation interactions;
that is, they do not know the model of the environment,
and therefore they are called model-free, e.g. Temporal

difference, Sarsa, Q-learning, and Monte Carlo methods.
This property is an advantage over more complex model-
based methods, e.g. dynamic programming, which need
a comprehensive knowledge of the dynamics of the envi-
ronment by the agent. This is known as the transition
function, which allows moving from one state to another
by planning and anticipating future states and rewards
[11]. On the other hand, the two approaches mentioned
above can be combined in a method called actor-critic,
where an actor or policy and a critic or value-function ap-
proximator are introduced, which what it does is calcu-
late the value function, while the actor uses those values
to update the policy [49].

A. REINFORCE

The first algorithm we consider is REINFORCE or
Monte-Carlo policy gradient, which is a policy-based RL
algorithm. The quantum version was studied previously
in ref [24]. The idea of some algorithms of this family
(policy gradient methods) is to learn the policy or
parametrized policy with respect to θ, i.e., πθ(a|s),
which can choose actions without requiring a value
function [11].

The REINFORCE algorithm then, consists of directly
applying the idea that PQC approximates the policy
πθ(a|s). In this case, a SOFTMAX-PQC policy is used,
which employs a non linear activation function softmaxβ
to the expectation values that can be between -1 and 1,
to normalize them. It is defined as follows:

πθ(a|s) = eβw〈Oa〉s,θ∑
a′ eβw〈Oa′ 〉s,θ

, (13)

where 〈Oa〉s,θ is the expectation value of the observables
per action, 〈Oa=0〉 = 〈Z0Z1Z2Z3〉, and 〈Oa=1〉 = 〈Oa=0〉,
and because we have the softmax, this give two values
that add up to one. Here θ are the rotation angles
θ ∈ [0, 2π]|θ|, where the dimension of this parameter is
defined in the norm |θ|, 〈Oa〉 are the observables per
action, and λ ∈ R|λ| are the scaling parameters, both
defined in section II C, β ∈ R is the inverse temperature
parameter, this controls how close to a step function [24]
So we have the parameters θ, λ, and w. In other words,
from the observables, we calculate the output of this
agent’s policy that is the probability of taking any of
the two available actions. This is made in an additional
post-processing softmax layer.

The loss function for this type of algorithms is:
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L(θ) = − 1
|B|

∑
s0,a0,r1,s1,a1,...∈B(

H−1∑
t=0

log(πθ(at|st))
H−t∑
t′=1

γt
′
rt+t′

)
.

(14)

In this case it is learning the policy that maximises
L(θ), defined in the Eq. (14). The agent will use it to
apply backpropagation to perform a gradient ascending
algorithm to optimize it updating the policy-model,
using several re-uploadings, similar to [50].

This loss function is defined b y B batches of episodes
(s0, a0, r1, s1, a1, . . .), and where

∑H−t
t′=1 γ

t′rt+t′ are the
discounted returns Gi,t with a discount rate γ. The hy-
perparameters used for this agent are a discount rate of
γ = 1. We use a separate optimizer for the different
learning parameters α1 = 0.1, α2 = 0.01, and α3 = 0.1.
We also use a batch size of B = 10, and an inverse temper-
ature parameter that we fix it to β =1. The pseudocode
of the algorithm can be seen in Algorithm 1.

Algorithm 1: REINFORCE with PQC policies,
using batch of episodes, in our case N=2000,
β = 1, γ = 1, and α = 0.1, 0.01, where M = N

B ,
and B = 10 is the number of episodes per batch.

Based on [24].
Input : A PQC policy πθ
Initialise: Parameters θ and ω

1 for t = 1,..., M do
2 Generate N episodes

{(s0, a0, r1, ..., sH−1, aH−1, rH)}i following πθ
for i = 1,..., N do

3 Compute the returns Gi,t ←
∑H−t
t′=1 γ

t′rit+t′
4 Compute the gradients 5θ log πθ(ait|sit)

using a SOFTMAX-PQC policy
5 end
6 Compute 4θ = 1

N

∑N
i=1
∑H−1
t=0 5θ log

πθ(ait|sit)(Gi,t)
7 Update θ ← θ + α4 θ
8 Compute average rewards Ravg
9 if Ravg ≥ 500 then

10 break
11 end
12 end

B. Deep Q Learning

Q learning is a model-free and value-based method,
i.e., it does not estimate a model of the environment
and operates by approximating the action-value function
Qπ(s, a). In the case of finite actions and states, Qπ(s, a)

can be seen as a strategy table, like the one mentioned
above, where the rows run through the states and the
columns the actions [51]. Q learning works satisfactorily
when the environment is simple; however, a problem ap-
pears when the number of different states and actions is
continuous. To solve that, deep Q learning uses a neural
network to approximate the action-value function. Deep
Q learning uses two neural networks: a main neural
network parametrized by θ to estimate Q(s, a; θ); and
a target neural network with θ′, to approximate the Q
values of the next action and state a′, s′. On the other
hand, this algorithm is also off-policy; that unlike the
on-policy approach that uses the same policy it is infer-
ring to find the optimal one, off-policy algorithms use
Q∗(s, a) = maxπ Qπ(s, a). That is, the actions taken,
at = argmaxaQ(st, a), differ from the policy to be
learned, thus obtaining better results by incorporating,
for example, exploration through an ε-greedy policy. An
experience replay is introduced to store past transitions
of the agent.

For the quantum case, a PQC as a function approxi-
mator is used, Qθ(s, a) = 〈Oa〉s,θ, where the main PQC
network, Uθ(s) is parametrized by θ, while the target
PQC network is Uθδ(s), that is, the target PQC is copied
from the main PQC after certain interval of episodes.
Where δ are the specific intervals of episodes after the
model parameters are copied, with the aim of stabi-
lizing the Q-value function, in our case this parameter
is set to 30. The quantum version was studied previ-
ously in ref [24, 40, 46]. Here, 〈Oa〉s,θ is the expectation
value of Oa as an output, also weighted in the same way
as section III A, but by an action-specific weight, with
the difference that the Pauli product for each action is
Oa=0 = Z0Z1 and Oa=1 = Z2Z3, these are re-scaled to
be between 0 and 1 in an additional layer applying on
(1 + 〈Z0Z1〉s,θ) /2 and (1 + 〈Z2Z3〉s,θ) /2 .

In this case the loss function (Eq. 15), which is the
mean squared error between the action-value Q and the
target Q values, is calculated over a batch of iterations
(s, a, r, s′) of the replay memory and θ′ parameters to
update the Q-values performing gradient descent,

L(θ) = 1
|B|

∑
s,a,r,s′∈B

(
Qθ(s, a)− [r + γmax

a′
Qθ′(s′, a′)]

)2
.

(15)
The pseudocode of the algorithm for this method is

presented in Algorithm 2.

C. Actor-Critic

The Reinforce algorithm is conceptually straightfor-
ward, but the estimator that the use of the gradient
has significant variance, making it infeasible for complex
and lengthy environments. That is why the idea of
baseline function b(s) is introduced, that is a function
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Algorithm 2: Deep Q-learning with PQC target
and Q-function approximator, with batch of

interactions, experience replay, and a ε-greedy
policy. In our case M = 2000. Based on [40].

Initialise: Replay memory D to capacity N
PQC action-value function Q with

random weights
1 for episode = 1,..., M do

Initialise: state s1 and encode into the
quantum state

2 for t = 1,..., ∞ do
3 With probability ε select random action at,
4 otherwise select at = maxaQ∗(st, a; θ)
5 Execute action at and observe reward rt

and next state st+1
6 Set st+1 = st, at and preprocess

θt+1 = θ(st+1)
7 Store transition (st, at, rt, st+1) in D
8 Sample random minibatch of transitions

(sj , aj , rj , sj+1) from D
9 Set

yj =
{

rj
rj + γmaxa′ Q(sj+1, a

′; θ)

Perform a gradient descent step on
(yj −Q(sj , aj ; θ))2

10 if done then
11 break
12 end
13 end
14 Compute average rewards Ravg
15 if Ravg ≥ 500 then
16 break
17 end
18 end

that depends only on the state, and not on the action.
So for this case, the parameterized policy πθ(s, a) which
we call the actor, to propose and update an action to a
given state. As well as the approximate value function
V πθφ (s) parameterized by θ, which we call the critic [26]
to evaluate the proposed action to the given state by the
actor, i.e, the expected return according to the specific
policy. The actor-critic then combines a policy-based
and value-based components to take advantage of each
other. The goal is to choose actions based on a policy
that maximises the expected return. This type of
algorithms are very active research areas of RL [25].
These methods use temporal difference to compute the
error δ of the estimate V on a transition (s, a, s′, a′)
from state (s, a) to (s′, a′): δ = r + γV (s′) − V (s), with
γ ∈ [0, 1).

In this case we use the same PQC for the actor
component as in section III A to learn a policy, i.e., to

generate the probability distribution of each action with
respect to the state, this because the actor is a policy
gradient method. For the critic we also use it, however,
this is different in the way that it is only necessary
one output instead of two. We then modified it to
ensure a critic value as a single output by modifying the
last layer by making that the only number of available
actions is 1. We removed the softmax layer used in
REINFORCE. Hence, in this way we can obtain one
output, i.e., λ〈Z0Z1Z2Z3〉 of the PQC that will provide
the probability of two outcomes.

The losses for this algorithm were calculated sepa-
rately, being the actor loss (Eq. (16)),

Lactor = −
T∑
t=1

log πθ(at|st)[G(st, at)− V πθ (st)], (16)

based on policy gradient methods per episode, where,
G =

∑T
t′=t γ

t′−trt′ is the returns.

While for the critic loss, Eq. (17):

Lcritic = Lδ(G− V πθ ), (17)

where Lδ(a) is the Hubber loss defined by 1
2 (G − V πθ )2

if |a| ≤ δ or δ ·
(
|a| − 1

2δ
)

otherwise [26]. In our case we
use a value of 1 for δ.

The pseudocode of the algorithm for this method is
presented in Algorithm 3.

IV. RESULTS

This section shows the results obtained for the tests
on the REINFORCE, deep Q-learning, and actor-critic
quantum methods using parametrized quantum circuits
and classical methods using neural networks. Due to its
random nature, 100 runs were made for each method
mentioned above, both quantum and classical making
use of tensorflow and tensorflow quantum [27].

All the tests were executed both in Google Colab,
in a virtual machine mlis1 and mlis2 each with 2
2080Ti GPUs, as well as in an on-site High-Performance
Computer (HPC) of the University of Nottingham.

First, in Fig. 7 we show an instance of the rewards
during the actor-critic method learning. It can be seen
that it manages to perform decently within the first
150 episodes approximately but with many ups and
downs, but it is not until episode 900 that it manages
to stabilize and consistently maintain a good reward,
i.e., the maximum reward that is 500 for the Cart-Pole
v1. Secondly, we made 100 runs of each because a
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(a) Quantum REINFORCE
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(b) Quantum Deep Q learning
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(c) Quantum Actor-Critic

FIG. 6: Average rewards vs. episodes over 100 runs, layers from 1-8, with a standard error of the mean confidence
interval for quantum REINFORCE on Fig. 6a, deep Q-learning on Fig. 6b, and actor-critic on Fig. 6c. In Fig. 6a, it
can be seen that the agent generally becomes better as the number of layers increases, learning faster and converging

to the maximum reward. However, with seven layers, it learns faster, but it takes longer to reach the maximum
reward, while for eight layers, it improves considerably. On the other hand, in Fig. 6b ff it is clearly seen that a

greater number of layers is necessary to have a better performance, possibly due to the complexity of its Q-function.
On the contrary, Fig. 6c, which shows an inset with 20,000 episodes, illustrates that increasing the number of layers

to eight gives worse results than having a single layer.

Algorithm 3: Actor-critic with a PQC policy,
and a PQC value function approximator with a
discount factor γ = 0.99, and with maximum

steps per episode of N = 10000. Based on [26].
Input : A PQC πθ(s, a), and V πθφ (s)

1 while True do
Initialise: Initial state s0, policy parameters

θ, and total episodes rewards R
2 for t = 1,.., N do
3 Take action at ∼ πθ(at, st),
4 Observe next state st+1(st, at, st+1)
5 Observe reward rt+1
6 Accumulate episode reward in R
7 if done then
8 break
9 end

10 end
11 Update running reward
12 Update V πθ (s)
13 Aπ(si, ai) = r(si, ai) + γV πθ (s′)− V πθ (s)
14 5θ ≈

∑
i5θ log πθ(ai|si)Aπ(si, ai)

15 θ ← θ + δ5θ
16 if running reward ≥ 350 and R = 500 then
17 break
18 end
19 end

particular run will be random each time and probably
with different behavior; this can be seen in the red
plot, which is more clearly how the agent is learning
and performing on average. However, it is not pos-
sible to notice if it stabilises in the range of 2000 episodes.

On the other hand, the three algorithms are compared
in Fig. 6. Where it was made an average of the 100
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FIG. 7: Here we can see an instance of actor-critic
agent performance during 2000 episodes. It can be seen
that after inconsistent learning, it manages to reach the
maximum reward of 500 from episode 900. On the other

hand, we have the agent performance as an average,
where we can see the actual behavior of the 100 runs,

which generally learn faster than the instance. However,
it clearly did not get the maximum reward in that

number of episodes. Until episode 1900, it begins to get
closer to the maximum reward; nevertheless, it is not

possible to appreciate if it manages to stabilise.

runs that were performed, filtered by each number
of layers, ranging from 1 to 8. All with a maximum
number of 2000 episodes, except for the actor-critic
method, where up to 80,000 episodes shown in inset of 6c.

Specifically for the quantum actor-critic, we can see
that the agent performs better within the first four layers.
Starting with a single layer makes the agent learn faster;
by adding more layers, it improves up to a certain point,
and if we go beyond that, for instance, three layers, it
worsens again.
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FIG. 8: Percentage of runs achieved the maximum
reward of 500 for REINFORCE, deep Q-learning and

actor-critic methods. This plot shows that for the case
of five layers, both actor-critic and deep Q-learning have

the same percentage of runs 82%, which is an
improvement for deep Q-learning, but not for the
actor-critic agent, which keeps getting worse until

reaching its minimum, which is 60%. REINFORCE
agent was the only one that maintained the same type

of behavior with a different number of layers. In
general, it can be seen that deep Q-learning and

REINFORCE improved with more number of layers
while actor-critic could not after four layers. This

behavior agrees with that seen in Fig. 6c.

On the other hand, the deep Q-learning method
is almost entirely different. It can be seen clearly
that both one layer and two layers did not perform
well; that is, more layers are needed to perform
better. This could be due to the complexity of its
Q-function, which makes the process harder to learn.
Each agent except Actor-Critic improved with more
number of layers. It is interesting to point out that
deep Q-learning needs more parameters to learn, while
the REINFORCE and Actor-Critic both have good
performance with the difference in how they learn, as
is the case that even with one layer can perform decently.

In Fig. 8 we show the percentage of runs that suc-
ceded, i.e., how many runs achieved the maximum
reward of 500. As we saw in Fig. 6, the number of layers
plays an essential role in the agent’s actual performance.
Both REINFORCE and actor-critic started with similar
behavior with 80% or more achieving the maximum
reward. For a single layer none of the 100 runs manages
to finish or achieved the full reward for deep Q-learning.
REINFORCE consistently gets better, whereas the
actor-critic with the first layers has a percentage of up to
more than 80%, but when the number of layers increases,
the percentage that succeeds decreases. This means
that having a more expressive function approximator is
really important for deep Q-learning. However, for the
actor-critic, it is slowing down learning so much that it
is no longer successful; therefore, a considerably simpler
function approximator is better for the actor-critic.
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FIG. 9: In this plot, we compare three different agents:
a PQC with four layers corresponding to 78 learnable

parameters, a classical neural network with 898
learnable parameters, and a classical-fair neural network

with 79 learnable parameters. This shows that the
particular architecture for the quantum agent is not

entirely suitable for this problem because the classical
agents performed significantly better with fewer as well

as a fair number of parameters.

For Fig 9, we compare PQC with four layers with clas-
sical neural network, and with fair classical NN that has
comparable number of parameters to PQC for the actor-
critic. We choose four layers because it was successful in
all cases. However it can be seen a comparison not fair,
that is why we choose a classical-fair version with 79 pa-
rameters, only one more than the actor-critic. For the
classical case, the number of parameters is 898 while for
the quantum case, is only 78 parameters, in the figure can
be seen that the classical and classical fair perform better
than the quantum. These results show that the classical
case works better than the quantum version, even with a
comparable number of parameters. In fact, the number of
parameters does not seem to make a significant difference
in the classical case. This may be because the particu-
lar PQC we are using is not optimal for this problem, or
perhaps there is some scope for designing an improved
quantum circuit. It is also possible that something else
is going on, causing the learning to slow down that we
do not know yet.

V. DISCUSSION

An important point to mention is that trying to
make an agent learn correctly is not straightforward;
it is necessary to experiment with hyperparameters
in order to get a good result. We chose to stick with
the hyperparameters provided in the recent research
papers, where they realised a considerable grid search
to determine the best ones. The only difference is the
case of the classical method in which the PQC was
replaced with a neural network. There, we did that
search ourselves and found that the most difficult of
each was deep Q-learning, whose Q function is more
complex than the others. It would be interesting to
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see if the quantum case of actor-critic can be further
improved by optimizing hyperparameters, however,
that is not something we investigate in this paper.
For this specific case, the quantum agent is not better
than the classical version, and the classical agents are
definitely performing better. Perhaps we need to address
a more complicated problem because the cart-pole is a
straightforward environment that is very well suited for
the classical algorithms.

The actor-critic, being the main focus of this paper, we
chose to represent the actor and critic by separate net-
works. However, an alternative will be to represent them
as a single neural network with a single PQC, previous
works have shown that this can actually obtain better
results. An overview for future work would be a com-
parison with a combined actor-critic PQC and see which
works better. Another reason of this decision is that we
already have a policy-based architecture that makes it
easy to change from a two-output configuration to a one-
output configuration. If we had chosen the other version,
things would be more complicated because, in that case,
a three-output architecture would be needed, which im-
plies changes in the quantum circuit and the method.
That is why I cannot say that one option is better than
the other; simply, the chosen version worked better for
our structure.

VI. CONCLUSION

In general, this project aims to understand the
concepts and ideas of quantum computing, mainly
the implementation of variational quantum circuits,
by applying reinforcement learning algorithms, espe-
cially the actor-critic method, using the TFQ framework.

In this project, we address the problem of the cart-
pole. We focus on the quantum actor-critic algorithm
using PQC. From the results, it can be seen that

although it has a good performance, it is not better
than the other algorithms, both quantum and classical.
This is to be expected due the size and nature of this
environment, as the benefit of the superposition of states
that quantum computing offers is not being used. The
advantages will be seen when more qubits or layers are
used, and when performing tasks ‘impossible’ even for a
powerful classical computer.

It is, however, an exciting project because, as far as we
know, there are not many works related to actor-critic al-
gorithms with a quantum circuit architecture, and of the
few that there are, they have taken a different approach
than this paper. Also, the fact of delving more into
RL topics as well as learning about quantum circuits,
which in my perspective, are some of the most complex
topics, has been a great challenge for me. However, it is
interesting to know that due to the state of development
in this area, it is still possible to make new contributions.

This project still has many improvements and different
aspects that can continue to be carried out. For example,
the environment approached, in this case with an actor-
critic algorithm that has a probabilistic policy, that is, we
have two possibilities or discrete actions, moving to the
left or right, being the output the probability between
these two; and also a set of continuous states. Another
perspective is to apply to problems with continuous ac-
tions such as the inverted pendulum.
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